Respuesta :
h(t) = -16t^2 + 70t + 2Â
h'(t) = -32t + 70Â
0 = -32t + 70Â
32t = 70Â
t = 70/32Â
t = 35/16Â
Using either method, t = 35/16.Â
h(35/16) = -16(35/16)^2 + 70(35/16) + 2Â
h(35/16) = -16(1225/256) + 2450/16 + 2Â
h(35/16) = -1225/16 + 2450/16 + 32/16Â
h(35/16) = 1257/16Â
So the maximum height is 1257/16 feet, which is 78.5625 feet.Â
To the nearest foot, that's 79 feet.Â