Answer:
maximum amount = 7,170.28‬
Explanation:
We will calculate using the present value of a lump sum
[tex]\frac{Principal}{(1 + rate)^{time} } = PV[/tex] Â
For year 1
Principal 3,000.00
time  1.00
rate  0.11
[tex]\frac{3000}{(1 + 0.11)^{1} } = PV[/tex] Â
PV Â 2,702.70
For year 2
Maturity  1,000.00
time  2.00
rate  0.11
[tex]\frac{1000}{(1 + 0.11)^{2} } = PV[/tex] Â
PV Â 811.62
For year 3
Maturity  5,000.00
time  3.00
rate  0.11
[tex]\frac{5000}{(1 + 0.11)^{3} } = PV[/tex] Â
PV Â 3,655.96
We add them to get the present value ofthe cash flow
3,655.96 + 811.62 + 2,702.70 = 7,170.28‬
This will be the maximun amount we can pay for the investment at our current rate. more than this sum will generate a negative net present value